Acids and Alkalis

According to the Arrhenius theory, a substance which produces hydrogen ion (H+) in water, is called acid. A substance which produces hydroxide ion (OH-) in water, is called base. According to Bronsted-Lowry theory, an acid is proton (H+) donor and base is proton acceptor.

Common Acids and Bases

Table K
Common Acids

Formula	Name hydrochloric acid			
HCl(aq)				
HNO ₃ (aq)	nitric acid			
$H_2SO_4(aq)$	sulfuric acid			
$H_3PO_4(aq)$	phosphoric acid			
$\begin{array}{c} \mathrm{H_2CO_3(aq)} \\ \mathrm{or} \\ \mathrm{CO_2(aq)} \end{array}$	carbonic acid			
$\begin{array}{c} \mathrm{CH_{3}COOH(aq)} \\ \mathrm{or} \\ \mathrm{HC_{2}H_{3}O_{2}(aq)} \end{array}$	ethanoic acid (acetic acid)			

Table L Common Bases

Formula	Name sodium hydroxide			
NaOH(aq)				
KOH(aq)	potassium hydroxide			
Ca(OH) ₂ (aq)	calcium hydroxide			
NH ₃ (aq)	aqueous ammonia			

Properties of acids and alkalis

Properties of Acids:

Sour taste: Many acids have a sour taste, although it is not recommended to taste acids as they can be harmful.

Reactivity with metals: Acids can react with certain metals, producing hydrogen gas and a salt.

Corrosive: Acids can corrode or damage certain materials, including metals and organic substances.

pH below 7: Acids have a pH value lower than 7 on the pH scale. The lower the pH, the stronger the acid.

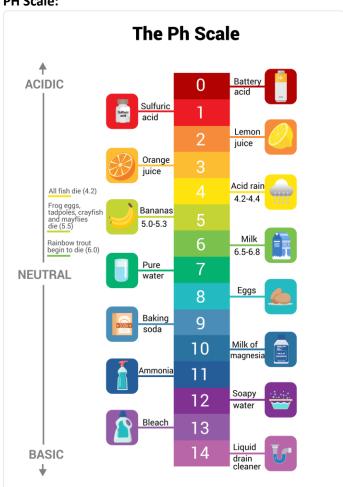
Turn blue litmus paper red: Acids can change the color of blue litmus paper to red.

Conductivity: Acids, when dissolved in water, can conduct electricity due to the presence of hydrogen ions (H+).

Properties of Alkalis (Bases):

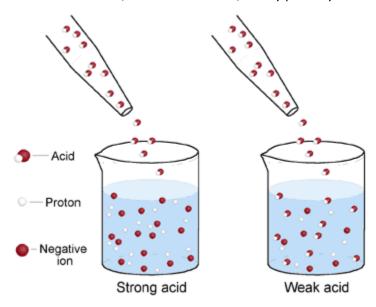
Bitter taste: Alkalis have a bitter taste, although it is not recommended to taste alkalis as they can be harmful.

Slippery or soapy feel: Alkalis have a soapy or slippery feel when touched.

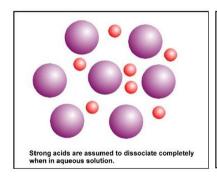

Reactivity with fats and oils: Alkalis can react with fats and oils, a process known as saponification, forming soap and glycerol.

pH above 7: Alkalis have a pH value higher than 7 on the pH scale. The higher the pH, the stronger the alkali.

Turn red litmus paper blue: Alkalis can change the color of red litmus paper to blue.


Conductivity: Alkalis, when dissolved in water, can conduct electricity due to the presence of hydroxide ions (OH-).

PH Scale:



Strong and weak acids and bases

A strong acid or alkali is one that is nearly or completely ionised in water. Examples are: hydrochloric acid, nitric acid and sulphuric acid. Sodium and potassium hydroxide are examples of strong bases. A weak acid or alkali, on the other hand, is only partially ionized in water.

Strong and Weak Acids and Bases

Conductivity of strong acids and bases:

Strong acids and bases with equal concentrations will have higher conductivity than weak acids and bases because they have higher H+ ions when ionized therefore they are more conductive than weak acids and bases. The conductivity of a solution can help in giving an idea of the solutions pH

Why strong acids and bases are have a higher reactivity:

Strong acids and bases have higher reactivity due to the higher presence of Hydronium ions in the solution despite being the same concentration. Since they have higher concentrations of H+ ions, they aim to fulfill their octet rule.

Neutralization:

A neutralization reaction is a reaction in which an acid and base react to form water and a salt. The neutralization of a strong acid and weak base will have a pH of less than 7, and conversely, the resulting pH when a strong base neutralizes a weak acid will be greater than 7. The neutralization of a strong acid and a strong base will result in a pH of 7.

Example:

Antacid medication is taken to neutralize acids in people who have high acidity 3)

Aluminum Hydroxide + Hydrochloric Acid

AIOH + HCI -> 3H2O + AICI

Al3+ + 3OH- 3H+ + 3CL-

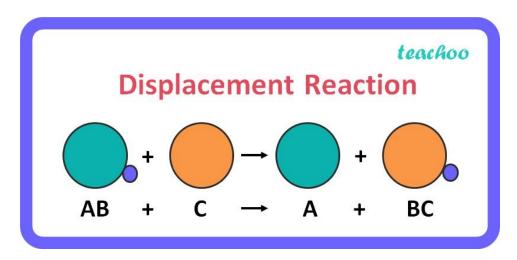
=AI(OH)3 + 3HCI -> 3H2O + AICI3

Identifying the products and the reactants in a reaction

The products of a reaction are on the right side of the arrow and the reactants are on the left side of the arrow, never use an equals sign when balancing equations as you might lose marks.

Classifying Substances using state symbols:

S: This denotes that the substance is a solid, it could be a powder, foil, ribbon, these are words to help you understand what the substance is, if you see this in a question, know that the state symbol is a solid.


Aq: Aq means aqueous which means that the substance is dissolved in water.

G: G means gas which you need to put right beside the chemical formula when writing an equation, when a question says a certain chemical is released, you know to write g under that chemical in the products.

L: L is a substance that is a liquid, the difference between I and aq is that the substance is a liquid not dissolved in water.

Identify Different reactions:

Displacement: A displacement reaction is when a chemical replaces another chemical in the products.

Precipitate: A precipitate reaction is when a solid is formed after the two reactants react with each other.

Chemical Equations

				
Acid + Metal Hydroxide> salt + water				
Metal Carbonate + Acid> salt + carbon dioxide + water				
Metal + Acid> salt + hydrogen				
Metal Oxide + Acid> salt + water				
Metal hydrogencarbonate + Acid> salt + carbon dioxide + water				

Practice Questions

Complete the word equations. Then convert into balanced chemical equations.

- Ammonia + _____nitric acid _____ → ammonium nitrate NH3+HNO3->NH4NO3
 Calcium oxide + ___Hydrochloric Acid _____ → calcium chloride + ___water ____ Ca(OH)2 + 2HCl -> CaCl2 + H2O
- 3. Aluminium hydroxide + nitric acid → ___Aluminum nitrate___ + water Al(OH)3 + 3HNO3 -> Al(NO3)3 + 3H2O

4.	Calcium carbonate + _ dioxide + + H2O	Ethanoic Acid Water				 '
5.	Ethanoic acid + magne 2CH3COOH + Mg -> Mg		sium Eth	anoate	+ hydrog	en
6.	Ethanoic acid water	+ magnesium ox 2CH3COOH + Mg2O -> I		=	nanoate +	
	Sodium hydroxide + water				ethanoa	ite +